Recovery Guarantees for Rank Aware Pursuits
                    
                        
                            نویسندگان
                            
                            
                        
                        
                    
                    
                    چکیده
منابع مشابه
Blanchard and Davies: Recovery Guarantees for Rank Aware Pursuits
This paper considers sufficient conditions for sparse recovery in the sparse multiple measurement vector (MMV) problem for some recently proposed rank aware greedy algorithms. Specifically we consider the compressed sensing framework with random measurement matrices and show that the rank of the measurement matrix in the sparse MMV problem allows such algorithms to reduce the effect of the log ...
متن کاملGuarantees of Riemannian Optimization for Low Rank Matrix Recovery
We establish theoretical recovery guarantees of a family of Riemannian optimization algorithms for low rank matrix recovery, which is about recovering an m × n rank r matrix from p < mn number of linear measurements. The algorithms are first interpreted as the iterative hard thresholding algorithms with subspace projections. Then based on this connection, we prove that if the restricted isometr...
متن کاملAccuracy Guarantees for ℓ1-Recovery
We discuss two new methods of recovery of sparse signals from noisy observation based on `1minimization. They are closely related to the well-known techniques such as Lasso and Dantzig Selector. However, these estimators come with efficiently verifiable guaranties of performance. By optimizing these bounds with respect to the method parameters we are able to construct the estimators which posse...
متن کاملPerformance Guarantees for Schatten-$p$ Quasi-Norm Minimization in Recovery of Low-Rank Matrices
We address some theoretical guarantees for Schatten-p quasi-norm minimization (p ∈ (0, 1]) in recovering low-rank matrices from compressed linear measurements. Firstly, using null space properties of the measuring operator, we provide a sufficient condition for exact recovery of low-rank matrices. This condition guarantees unique recovery of matrices of ranks equal or larger than what is guaran...
متن کاملSparse Signal Recovery via ECME Thresholding Pursuits
The emerging theory of compressive sensing CS provides a new sparse signal processing paradigm for reconstructing sparse signals from the undersampled linear measurements. Recently, numerous algorithms have been developed to solve convex optimization problems for CS sparse signal recovery. However, in some certain circumstances, greedy algorithms exhibit superior performance than convex methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2012
ISSN: 1070-9908,1558-2361
DOI: 10.1109/lsp.2012.2199752